Primary Studies on Variation in Position of Trifluoromethyl Groups in Several Aromatic Group-14 Derivatives by ¹⁹F-NMR Spectroscopy

by Bao Yu Xue*a) and Keith B. Dillon^b)

 ^a) Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, P. R. China (phone: +86-371-65511511; fax: +86-371-65511998; e-mail: byxue@hotmail.com)
^b) Chemistry Department, Durham University, South Road, Durham DH13LE, UK

Variation in the position of CF₃ groups in several aromatic Group-14 compounds was studied by ¹⁹F-NMR spectroscopy. In these compounds R_nECl_{4-n} (n = 1 or 2; E = Si, Ge, or Sn; $R = 2,4,6-(CF_3)_3C_6H_2$ (=Ar), 2,6-(CF₃)₂C₆H₃ (=Ar'), or 2,4-(CF₃)₂C₆H₃ (=Ar')), Ar, Ar', and Ar'' are all bulky, strongly electron-withdrawing ligands. The ¹⁹F-NMR studies of the variation in position of the CF₃ substituents in these compounds as revealed by chemical shifts could be correlated with the electronegativities of the central elements E, and with intramolecular E–F interactions derived from single-crystal X-ray diffraction data. These interactions are considered to play an important role in the stabilization of these compounds.

Introduction. – The 'fluoromes' ligand 2,4,6-(CF₃)₃C₆H₂ (= Ar, henceforth) is well known for its stabilizing influence in the compounds of transition metals [1][2] and main-group elements [3–10]. This effect is due to the high electronegativity, combined with some $M \rightarrow C \pi$ back-donation and steric demands, of the two *ortho*-positioned trifluoromethyl groups to stabilize low-valent, low-coordinate main group compounds. The 'fluoroxyl' 2,6-(CF₃)₂C₆H₃ (=Ar') group, which possesses similar advantages, is used much less frequently, partly because lithiation of its precursor 1,3-bis(trifluoromethyl)benzene (Ar'H) can proceed at two different positions, leading to a mixture of Ar' and 2,4-(CF₃)₂C₆H₃ (=Ar'') derivatives [11–15]. In Group 14, ArLi reacts with ECl₄ (E = Ge or Sn) in a 2:1 ratio to yield both ArECl₃ and Ar₂ECl₂ [14]. However, it has been found that the mixture of Ar'Li and 2,4-(CF₃)₂C₆H₃Li (Ar''Li) reacts with ECl₄ (E = Si, Ge, or Sn) to produce either Ar'_nECl_{4-n} or Ar'_nECl_{4-n} (*n* = 1 or 2); the reaction does not produce the mixed-ligand compound Ar'Ar''ECl₂. There is a further complication in the Si derivatives, since F/Cl exchange takes place readily, particularly for Ar [1g][8][14].

Few papers report on derivatives of Group 14 (*e.g.*, Si, Ge, and Sn) with Ar, Ar', or Ar", especially with respect to the variation in the position of the CF₃ substituents. The present paper is the first to study the CF₃ positions in these compounds by ¹⁹F-NMR spectroscopy.

Experimental. – *General.* All manipulations, including NMR sample preparation, were carried out either under dry N₂ or *in vacuo*, by means of standard *Schlenk* procedures or a glovebox. Chemicals of the best available commercial grades were used, without further purification. ¹⁹F-NMR Spectra: *Varian-Mercury-200* spectrometer; at 188.18 MHz; chemical shifts $\delta(F)$ in ppm relative to external CFCl₃.

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

Lithiation. By the methods of *Goodwin* [9] and *Roden* [15], ArH was directly treated with 2.5M BuLi in Et₂O at -78° (acetone/dry ice bath) to produce ArLi. Ar'H reacted with BuLi under the same conditions to produce a mixture Ar'Li/Ar''Li in a *ca.* 1:1 ratio [15]. **WARNING:** It is important in these reactions to keep a slight excess of the hydrocarbon (ArH or Ar'H) with respect to BuLi at all times, to avoid any attack at a CF₃ group and the possible explosive formation of LiF (*Scheme*).

Scheme. Synthetic Reactions (all performed at -78°)

ArH	BuLi, Et₂O	ArLi	ECl₄, hexanes	Ar_nECl_{4-n} (E = Ge or Sn; $n = 1$ or 2)			
Ar'H	BuLi, Et ₂ O	Ar'Li + Ar"Li	ECl₄, hexanes	Ar'ECl ₂ + Ar"ECl ₂ (E = Si, Ge, or Sn)			
(Ar = 2,4,6-(CF ₃) ₃ C ₆ H ₂ ; Ar' = 2,6-(CF ₃) ₂ C ₆ H ₃ ; Ar" = 2,4-(CF ₃) ₂ C ₆ H ₃)							

Chloro Derivatives **1**–**10**. All of the chloro derivatives were prepared by reacting the corresponding Group-14 tetrachloride ECl₄ with 2 equiv. of ArLi or a mixture Ar'Li/Ar"Li (to a total of 2 equiv.). The new compounds synthesized were: Ar'_2SiCl_2 **1**, Ar"_2SiCl_2 **2**, ArGeCl_3 **3**, Ar_2GeCl_2 **4**, Ar'_2GeCl_2 **5**, Ar"_2GeCl_2 **6**, ArSnCl_3 **7**, Ar_2SnCl_2 **8**, Ar'_2SnCl_2 **9**, and Ar"_2SnCl_2 **10** (*Fig. 1*)¹). All products were dissolved in Et₂O and the solns. placed in the refrigerator. Six of these produced well-formed colorless crystals, which were suitable for single-crystal X-ray diffraction [14]. All of these compounds were now further analyzed by ¹⁹F-NMR spectroscopy. As found by previous authors [1g][8][14], attempted synthesis of Ar₂SiCl₂ led to rapid F/Cl exchange, and the only product which could be isolated was Ar₂SiF₂. Slower exchange occurred for Ar'- and Ar"-substituted chlorosilanes [14], as shown in the *Results and Discussion* section.

Results and Discussion. – The results of the ¹⁹F-NMR study of **1**–**10** are listed in *Table 1*, while *Fig. 2* shows some typical ¹⁹F-NMR spectra in the CF₃ region. The spectra of ArGeCl₃ **3** and Ar₂SnCl₂ **8** (*Fig. 2, a* and *b*, resp.) as the main species present exhibited the expected F-atom 2:1 intensity ratio of the *o*-CF₃/*p*-CF₃ groups. The solution produced by reaction of SnCl₄ with the Ar'Li/Ar''Li mixture showed a *ca.* 1.8:1 ratio of Ar'₂SnCl₂ **9** to Ar''₂SnCl₂ **10** (*Fig. 2, c*). Compound **9** yielded a single resonance, having *o*-CF₃ groups only, while **10** gave two signals in a 1:1 intensity ratio for the *o*-and *p*-CF₃ groups. *Fig. 2, d*, showed that the main component Ar''₂SiCl₂ **2** had undergone partial Cl/F exchange to Ar''₂SiF₂, in the Cl/F ratio of *ca.* 4:1 (the *o*-CF₃ signal of Ar''₂SiF₂ was a *t* due to ⁵*J*(F,F) coupling, and there was also a *sept.* signal at $\delta(F) - 133.0$ (not shown in *Fig. 2, d*) for the F-atoms bound to Si, with ⁵*J*(F,F) 12.4 Hz [14]). The *p*-CF₃ signals of **2** and Ar''₂SiF₂ overlapped, hence the 1.25 relative intensity integral included both signals. The spectrum of Ar''₂GeCl₂ **6** (*Fig. 2, e*) again gave the expected 1:1 intensity ratio for the *o*- and *p*-CF₃ groups.

Roden has shown that Ar'H reacts with BuLi to produce an Ar'Li/Ar''Li 1:1 mixture, which reacts with PCl_3 to generate Ar'Ar''PCl and Ar''_2PCl; these have both

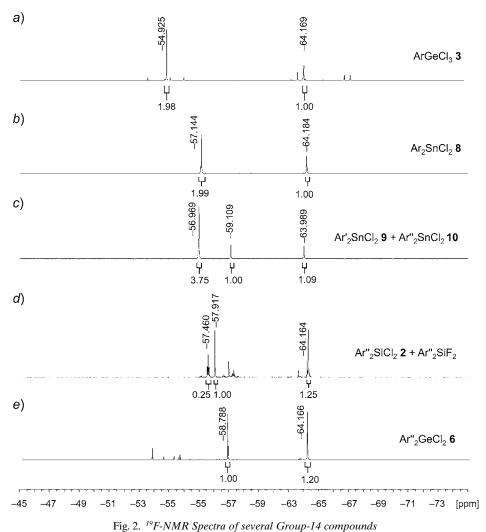

Systematic names of 1-10: 1,1'-(dichlorosilylene)bis[2,6-bis(trifluoromethyl)benzene] (1), 1,1'-(dichlorosilylene)bis[2,4-bis(trifluoromethyl)benzene] (2), trichloro[2,4,6-tris(trifluoromethyl)phenyl]germane (3), dichlorobis[2,4,6-tris(trifluoromethyl)phenyl]germane (4), bis[2,6-bis(trifluoromethyl)phenyl]dichlorogermane (5), bis[2,4-bis(trifluoromethyl)phenyl]dichlorogermane (6), trichloro[2,4,6-tris(trifluoromethyl)phenyl]stannane (7), dichlorobis[2,4,6-tris(trifluoromethyl)phenyl]dichlorostannane (8), bis[2,6-bis(trifluoromethyl)phenyl]dichlorostannane (9), and bis[2,4-bis(trifluoromethyl)phenyl]dichlorostannane (10).

Fig. 1. Structures of the Group-14 compounds studied

Compound		$\delta(F)$ (o-CF ₃)	$^{4}J(Sn,F)$ [Hz]	$\delta(F) (p-CF_3)$
1	Ar'2SiCl2	- 58.9 (s, 12 F)		
2	Ar"2SiCl2	-57.9(s, 6 F)		-64.2 (s, 6 F)
3	ArGeCl ₃	-54.9(s, 6 F)		-64.2(s, 3 F)
4	Ar ₂ GeCl ₂	-54.4 (s, 12 F)		-64.1 (s, 6 F)
5	Ar'2GeCl2	-53.8 (s, 12 F)		
6	Ar"2GeCl2	-58.8(s, 6 F)		-64.2 (s, 6 F)
7	ArSnCl ₃	$-55.9(6 \text{ F})^{a}$	19	-63.0(s, 3 F)
8	Ar_2SnCl_2	$-57.1 (12 \text{ F})^{a}$	10	-64.2 (s, 6 F)
9	Ar' ₂ SnCl ₂	$-57.0(12 \text{ F})^{a})$	10	
10	Ar"2SnCl2	$-59.1 (6 \text{ F})^{\text{b}}$		-64.0(s, 6 F)

Table 1. ¹⁹*F*-NMR Chemical Shifts of Si, Ge, and Sn Compounds. δ in ppm.

been characterized by single-crystal X-ray diffraction [10][12][15]. Initially, it was thought that the structure of the predominant isomer of the diaryl-substituted germane and stannane derivatives would be $Ar'Ar''ECl_2$ (E = Ge or Sn), for steric reasons. It was found, however, that a solution of Ar'Li and Ar''Li reacting with ECl₄ (E = Ge or Sn) produced a mixture Ar'_2ECl_2/Ar''_2ECl_2 (*cf. Fig. 2,c*) and not $Ar'Ar''ECl_2$. This result is rather surprising from a steric viewpoint.

Table 2 shows the *van der Waals* radii and electronegativities of the central element E [16], together with the shortest distances between F-atoms of the o-CF₃ groups and E for compounds where the crystal and molecular structures have been determined [14]. In all cases, these distances were considerably shorter than the sums of the *van der*

1081

Compound	<i>van der Waals</i> radius of E [Å]	Electronegativity of E	Sum of <i>van der</i> <i>Waals</i> radii [Å]	Shortest E–F distance [Å]
2 Ar" ₂ SiCl ₂	2.08 (Si)	1.89 (Si)	1.47 + 2.08 = 3.55	2.882(2)
3 ArGeCl ₃	2.12 (Ge)	2.07 (Ge)	1.47 + 2.12 = 3.59	2.909(2)
4 Ar ₂ GeCl ₂	2.12 (Ge)	2.07 (Ge)	1.47 + 2.12 = 3.59	2.757(2)
6 Ar" ₂ GeCl ₂	2.12 (Ge)	2.07 (Ge)	1.47 + 2.12 = 3.59	2.848(2)
8 Ar ₂ SnCl ₂	2.18 (Sn)	1.86 (Sn)	1.47 + 2.18 = 3.65	2.720(4)
9 Ar'_2SnCl_2	2.18 (Sn)	1.86 (Sn)	1.47 + 2.18 = 3.65	2.686(2)

Table 2. Bond Distance E-F of Group-14 Compounds

Waals radii, as shown. These results clearly indicate an additional weak ('secondary') coordination or attractive electrostatic interactions, which can play an important role in the stabilization of these compounds (*Table 2*).

The ¹⁹F-NMR chemical shifts for *p*-CF₃ substituents in the Si, Ge, and Sn chloro compounds with Ar, Ar', and Ar'' were between $\delta(F) - 64.0$ and - 64.2, except for ArSnCl₃**7** with a $\delta(F)$ of - 63.0 (*Table 1*). These results were explained by the fact that *p*-CF₃ groups are remote from the main-group atoms E; thus, the corresponding F-atoms did not interact with E, and their $\delta(F)$ were very similar.

A much larger shift range was found for the o-CF₃ groups, from $\delta(F) - 53.8$ to -59.1 (*Table 1*), due at least in part to the intramolecular F–E interactions mentioned above. The atoms E also differ in covalent radius and electronegativity (*Table 2*), which can affect the chemical shifts. As shown in *Table 1*, the $\delta(F)$ value was always more negative for the o-CF₃ groups where E = Sn than for the analogous compound where E = Ge, consistent with their relative electronegativities [16]. Fewer values for Si compounds could be compared because of the rapid F/Cl exchange found in Ar systems. Hence, Ar₂SiCl₂ was not observed, although it may well be formed as a reactive intermediate [1g][8][14]. The F-atoms of the o-CF₃ groups of Ar'₂SiCl₂ **1** had a more negative shift than those of either Ar'_2GeCl_2 5 or Ar'_2SnCl_2 9. Ge is generally regarded as being more electronegative than Sn or Si, which have comparable electronegativities (*Table 2*); so the less negative shifts in Ge compounds probably reflected this, while the results for Si and Sn compounds were very similar where data were available. The exception to this generally good correlation appeared to be $\operatorname{Ar''_2GeCl_2} 6$, which had a more negative $\delta(F)$ for the *o*-CF₃ groups than any of the other germanium compounds. Both ArGeCl₃ 3 and Ar"₂GeCl₂ 6 have only six F-atoms of the o-CF₃ groups; however Ar₂GeCl₂ **4** and Ar'₂GeCl₂ **5** have twelve such F-atoms; so, in ArGeCl₃ **3** and Ar''₂GeCl₂ **6**, there are fewer possible weak interactions of the type discussed previously. In a similar way, Ar"₂SnCl₂ 10 had a more negative shift than Ar'₂SnCl₂ 9, although the reverse pattern appeared to hold for Si compounds 1 and 2, where the values were not very different (Table 1). Small ${}^{4}J(Sn,F)$ couplings were observed in compounds 7, 8, and 9 (Table 1), though it was not possible to distinguish the separate ¹¹⁷Sn-¹⁹F and ¹¹⁹Sn-¹⁹F satellites. These values were entirely compatible with the number of bonds involved.

¹⁹F-NMR Spectroscopy is clearly valuable as a means of identifying the products formed in these reactions, particularly those from the Ar'Li/Ar''Li mixture. In the disubstituted compounds $R^1R^2ECl_2$, *e.g.*, if $R^1=R^2=Ar'$, only a single signal from

twelve F-atoms of o-CF₃ groups should be seen. If $R^1 = R^2 = Ar''$, then two equally intense signals should be apparent, one from six F-atoms of o-CF₃ groups at higher frequency and one from six F-atoms of p-CF₃ groups at lower frequency. In the event of formation of the mixed species Ar'Ar'ECl₂, there should be two separate signals for the F-atoms of o-CF₃ groups in a 2:1 intensity ratio, and one signal of intensity 1 for the F-atoms of the p-CF₃ group. As stated above, such a species was not detected in the present work. More complex mixtures of possible products can be similarly analyzed.

Conclusions. – The variation in ¹⁹F-NMR chemical shifts for some Group-14 arylsubstituted chloro derivatives $R_n \text{ECl}_{4-n}$ (R = 2,4,6-(CF₃)₃C₆H₂ (=Ar), 2,6-(CF₃)₂C₆H₃ (=Ar'), or 2,4-(CF₃)₂C₆H₃ (=Ar''); E = Si, Ge, or Sn; n = 1 or 2) was studied for the first time. While the δ (F) for *p*-CF₃ groups remained essentially constant, those for the *o*-CF₃ groups showed interesting variations, which could be correlated with the number of weak E–F interactions found in the solid state, and with the electronegativities of the Group-14 elements. ¹⁹F-NMR spectroscopy was particularly valuable for identifying the components of mixtures of species in solution. We hope to extend this approach to other groups of the Periodic Table in the near future.

We thank the Committee of Vice Chancellors and Principals of the Universities of the United Kingdom (CVCP) for an ORS award, the Graduate Society of Durham University for a graduate-student award for B. Y. Xue, A. M. Kenwright, C. F. Heffernan, and I. H. McKeag for assistance in recording some of the NMR spectra, and Y. G. Fan and J. H. Zhao for help drawing figures.

REFERENCES

- a) R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, M. R. Bond, C. J. Carrans, J. Am. Chem. Soc. 1993, 115, 2070; b) R. D. Schluter, H. S. Isom, A. H. Cowley, D. A. Atwood, R. A. Jones, F. Olbrick, S. Corbelin, R. J. Lagow, Organometallics 1994, 13, 4058; c) K. B. Dillon, H. P. Goodwin, J. Organomet. Chem. 1994, 469, 125; d) M. Belay, F. T. Edelmann, J. Organomet. Chem. 1994, 479, C21; e) C. Bartolomé, P. Espinet, J. Villafañe, S. Giesa, A. Martin, A. G. Orpen, Organometallics 1996, 15, 2019; f) P. Espinet, S. Martin-Barrios, J. Villafañe, P. G. Jones, A. K. Fischer, Organometallics 2000, 19, 290; g) J. Braddock-Wilking, M. Schieser, L. Brammer, J. Huhmann, R. Shaltout, J. Organomet. Chem. 1995, 499, 89.
- [2] V. C. Gibson, C. Redshaw, L. J. Sequeira, K. B. Dillon, W. Clegg, M. R. J. Elsegood, *Chem. Commun.* 1996, 2151; K. B. Dillon, V. C. Gibson, J. A. K. Howard, L. J. Sequeira, J. W. Yao, *Polyhedron* 1996, 15, 4173; K. B. Dillon, V. C. Gibson, J. A. K. Howard, C. Redshaw, L. J. Sequeira, J. W. Yao, *J. Organomet. Chem.* 1997, 528, 179; A. S. Batsanov, K. B. Dillon, V. C. Gibson, J. A. K. Howard, L. J. Sequeira, J. W. Yao, *J. Organomet. Chem.* 1997, 528, 179; A. S. Batsanov, K. B. Dillon, V. C. Gibson, J. A. K. Howard, L. J. Sequeira, J. W. Yao, *J. Organomet. Chem.* 2001, 631, 181.
- [3] N. Burford, C. L. B. Macdonald, D. J. LeBlanc, T. S. Cameron, Organometallics 2000, 19, 152.
- [4] H. Grützmacher, H. Pritzkow, F. T. Edelmann, Organometallics 1991, 10, 23.
- [5] S. Brooker, J.-K. Buijink, F. T. Edelmann, Organometallics 1991, 10, 25.
- [6] K. H. Whitmire, D. Labahn, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, J. Organomet. Chem. 1989, 402, 55.
- [7] M. Scholtz, H. W. Roesky, D. Stalke, K. Keller, F. T. Edelmann, J. Organomet. Chem. 1989, 366, 73.
- [8] J.-K. Buijink, M. Noltemeyer, F. T. Edelmann, J. Fluorine Chem. 1993, 61, 51.
- [9] H. P. Goodwin, Ph.D. Thesis, Durham University, Durham, 1990.
- [10] A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk, M. D. Roden, *Eur. J. Inorg. Chem.* 2001, 1729.
- [11] L. Heuer, P. G. Jones, R. Schmutzler, J. Fluorine Chem. 1990, 46, 243; H.-J. Kroth, H. Schumann, H. G. Kuivila, C. D. Schaeffer Jr., J. J. Zuckerman, J. Am. Chem. Soc. 1975, 97, 1754.

- [12] A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, P. Hazendonk, A. L. Thompson, J. Chem. Soc., Dalton Trans. 2002, 4622.
- [13] G. E. Carr, R. D. Chambers, T. F. Holmes, D. G. Parker, J. Organomet. Chem. 1987, 325, 13.
- [14] A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, P. Hazendonk, A. L. Thompson, B. Y. Xue, Dalton Trans. 2003, 2496.
- [15] M. D. Roden, Ph.D. Thesis, Durham University, Durham, 1998.
- [16] S. S. Batsanov, 'Experimental Foundations of Structural Chemistry', Moscow University Press, 2008.

Received July 23, 2012